Chiari type 1 malformation is a neurological disorder characterized by an obstruction of the cerebrospinal fluid (CSF) circulation between the brain (intracranial) and spinal cord (spinal) compartments. Actions such as coughing might evoke spinal cord complications in patients with Chiari type 1 malformation, but the underlying mechanisms are not well understood. More insight into the impact of the obstruction on local and overall CSF dynamics can help reveal these mechanisms. Therefore, our previously developed computational fluid dynamics framework was used to establish a subject-specific model of the intracranial and upper spinal CSF space of a healthy control. In this model, we emulated a single cough and introduced porous zones to model a posterior (OBS-1), mild (OBS-2), and severe posterior-anterior (OBS-3) obstruction. OBS-1 and OBS-2 induced minor changes to the overall CSF pressures, while OBS-3 caused significantly larger changes with a decoupling between the intracranial and spinal compartment. Coughing led to a peak in overall CSF pressure. During this peak, pressure differences between the lateral ventricles and the spinal compartment were locally amplified for all degrees of obstruction. These results emphasize the effects of coughing and indicate that severe levels of obstruction lead to distinct changes in intracranial pressure.
Read full abstract