We investigate the band dispersion and the spin texture of topologically protected surface states in the bulk topological insulators Bi2Se3 and Bi2Te3 by first-principles methods. Strong spin-orbit entanglement in these materials reduces the spin polarization of the surface states to ∼50% in both cases; this reduction is absent in simple models but of important implications to essentially any spintronic application. We propose a way of controlling the magnitude of spin polarization associated with a charge current in thin films of topological insulators by means of an external electric field. The proposed dual-gate device configuration provides new possibilities for electrical control of spin.
Read full abstract