Abstract

We study quantum phase transitions induced by the on-site spin-orbit interaction lambda(L.S) in a toy model of vanadium chains. In the lambda->0 limit, the decoupled spin and orbital sectors are described by a Haldane and an Ising chain, respectively. The gapped ground state is composed of a ferro-orbital order and a spin liquid with finite correlation lengths. In the opposite limit, strong spin-orbital entanglement results in a simultaneous spin and orbital-moment ordering, which can be viewed as an orbital liquid. Using a combination of analytical arguments and density-matrix renormalization group calculation, we show that an intermediate phase, where the ferro-orbital state is accompanied by a spin Neel order, is bounded on both sides by Ising transition lines. Implications for vanadium compounds CaV2O4 and ZnV2O4 are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.