Autism spectrum disorder is a neurodevelopmental disorder characterized by sensory abnormalities, social skills impairment and cognitive deficits. Although recent evidence indicated that induction of autism-like behavior in animal models causes abnormal neuronal excitability, the impact of autism on neuronal properties is still an important issue. Thus, new findings at the cellular level may shed light on the pathophysiology of autism and may help to find effective treatment strategies. Here, we investigated the behavioral, electrophysiological and histochemical impacts of prenatal exposure to valproic acid (VPA) in rats. Findings revealed that VPA exposure caused a significant increase in the hot plate response latency. The novel object recognition ability was also impaired in VPA-exposed rats. Along with these behavioral alterations, neurons from VPA-exposed animals exhibited altered excitability features in response to depolarizing current injections relative to control neurons. In the VPA-exposed group, these changes consisted of a significant increase in the amplitude, evoked firing frequency and the steady-state standard deviation of spike timing of action potentials (APs). Moreover, the half-width, the AHP amplitude and the decay time constant of APs were significantly decreased in this group. These changes in the evoked electrophysiological properties were accompanied by intrinsic hyperexcitability and lower spike-frequency adaptation and also a significant increase in the number of NADPH-diaphorase stained neurons in the hippocampal CA1 area of the VPA-exposed rats. Taken together, findings demonstrate that abnormal nociception and recognition memory is associated with alterations in the neuronal responsiveness and nitrergic system in a rat model of autism-like.