Dynamic functional connections (dFCs), can reveal neural activities, which provides an insightful way of mining the temporal patterns within the human brain and further detecting brain disorders. However, most existing studies focus on the dFCs estimation to identify brain disorders by shallow temporal features and methods, which cannot capture the inherent temporal patterns of dFCs effectively. To address this problem, this study proposes a novel method, named dynamic functional connections analysis with spectral learning (dCSL), to explore inherently temporal patterns of dFCs and further detect the brain disorders. Concretely, dCSL includes two components, dFCs estimation module and dFCs analysis module. In the former, dFCs are estimated via the sliding window technique. In the latter, the spectral kernel mapping is first constructed by combining the Fourier transform with the non-stationary kernel. Subsequently, the spectral kernel mapping is stacked into a deep kernel network to explore higher-order temporal patterns of dFCs through spectral learning. The proposed dCSL, sharing the benefits of deep architecture and non-stationary kernel, can not only calculate the long-range relationship but also explore the higher-order temporal patterns of dFCs. To evaluate the proposed method, a set of brain disorder classification tasks are conducted on several public datasets. As a result, the proposed dCSL achieves 5% accuracy improvement compared with the widely used approaches for analyzing sequence data, 1.3% accuracy improvement compared with the state-of-the-art methods for dFCs. In addition, the discriminative brain regions are explored in the ASD detection task. The findings in this study are consistent with the clinical performance in ASD.
Read full abstract