Abstract

Given the need for quantitative measurement and 3D visualisation of brain tumours, more and more attention has been paid to the automatic segmentation of tumour regions from brain tumour magnetic resonance (MR) images. In view of the uneven grey distribution of MR images and the fuzzy boundaries of brain tumours, a representation model based on the joint constraints of kernel low-rank and sparsity (KLRR-SR) is proposed to mine the characteristics and structural prior knowledge of brain tumour image in the spectral kernel space. In addition, the optimal kernel based on superpixel uniform regions and multikernel learning (MKL) is constructed to improve the accuracy of the pairwise similarity measurement of pixels in the kernel space. By introducing the optimal kernel into KLRR-SR, the coefficient matrix can be solved, which allows brain tumour segmentation results to conform with the spatial information of the image. The experimental results demonstrate that the segmentation accuracy of the proposed method is superior to several existing methods under different indicators and that the sparsity constraint for the coefficient matrix in the kernel space, which is integrated into the kernel low-rank model, has certain effects in preserving the local structure and details of brain tumours.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.