Abstract

Feature distortions of data are a typical problem in remote sensing image classification, especially in the area of transfer learning. In addition, many transfer learning-based methods only focus on spectral information and fail to utilize spatial information of remote sensing images. To tackle these problems, we propose spectral-spatial weighted kernel manifold embedded distribution alignment (SSWK-MEDA) for remote sensing image classification. The proposed method applies a novel spatial information filter to effectively use similarity between nearby sample pixels and avoid the influence of nonsample pixels. Then, a complex kernel combining spatial kernel and spectral kernel with different weights is constructed to adaptively balance the relative importance of spectral and spatial information of the remote sensing image. Finally, we utilize the geometric structure of features in manifold space to solve the problem of feature distortions of remote sensing data in transfer learning scenarios. SSWK-MEDA provides a novel approach for the combination of transfer learning and remote sensing image characteristics. Extensive experiments have demonstrated that the proposed method is more effective than several state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.