The pattern of spectral interference fringes in broad dynamic Rabi sidebands allows for a considerable degree of control by shaping the picosecond driving pulse. We demonstrate experimental evidence of such control and report an analytic and numerical investigation of possibilities to control the fringe pattern to produce a comb-like optical structure. The temporal phase and amplitude shaping of a picosecond driving pulse influence the spectrum envelope, fringe contrast, and fringe spacing variation in the sideband spectra. The sideband spectrum envelope depends on the sharpness of the driving pulse, that is, on the rate at which the temporal distance between the leading and trailing edges grows away from the pulse maximum. Increasing this parameter reduces the variation of the envelope amplitude across the sideband. The fringe contrast, defined by the maximum-to-minimum difference, depends strongly on the asymmetry of the driving pulse. The imbalance between the leading and trailing edges leads to a decrease of the contrast. The variation of interpeak distance within a sideband was controlled using the temporal shape of the driving pulse. In the particular case of a blue-shifted sideband emitted by excited oxygen atoms driven by a picosecond pulse of 800 nm carrier wavelength and ∼5×10¹⁰ W cm⁻² intensity, a Gaussian pulse shape results in an interpeak distance increasing almost five times over the interval from 1.60 to 1.66 eV, whereas a super-Gaussian shape leads to almost equidistant fringes producing a comb-like spectrum.