Simple SummaryThe growth and nutrient utilization of hydroponic vegetables are largely affected by the nutrient solution management method and light environment. This study was conducted to improve the growth, nutrient absorption efficiency, and nutrient use efficiency of basil plants grown in a plant factory with artificial lighting by controlling the nutrient solution management method and light spectrum. Basil plants were treated with 4 applied nutrient quantities and three red:blue ratios from transplanting to harvest (20 days). Results showed that low applied nutrient quantity significantly improved the nutrient use efficiency and nutrient absorption efficiency. Furthermore, the yield of the basil plant and the absorption of N and K were significantly influenced by different red:blue ratios under low applied nutrient quantity treatments. Therefore, this study has determined the optimal combination of the applied nutrient quantity and red:blue ratio for improving the growth, nutrient use efficiency, and nutrient absorption efficiency of basil plants. The findings of this study can be applied to hydroponic basil production for saving resources and protecting the environment.Quantitative nutrient management has advantages, such as saving resources and improving nutrient utilization, compared with the conventional electrical conductivity management method. The growth and nutrient utilization of vegetables are affected by the integrated environmental conditions such as nutrient supply and light spectrum. This study investigated the effects of applied nutrient quantity (ANQ) (0.5, 1, 2, and 4 times (T) the absorption quantity of nutrients determined in the preliminary experiment, indicated by 0.5T, 1T, 2T, and 4T, respectively) in nutrient solution and red:blue ratio (R:B = 3:7, 7:3, and 9:1, indicated by RB3:7, RB7:3, and RB9:1, respectively) on the growth and nutrient utilization of basil plants in a plant factory with artificial lighting. Results demonstrated that the nutrient use efficiency (NUE) and the nutrient absorption efficiency (NAE) were significantly increased by the ANQ of 0.5T compared with the treatments of 1T, 2T, and 4T, irrespective of R:B ratios. Furthermore, under the ANQ of 0.5T, RB7:3 significantly increased the yield and the absorption of N and K of the basil plant compared with other R:B ratios. Therefore, the ANQ of 0.5T combined with RB7:3 was considered the optimal combination to improve the yield, NUE, and NAE of basil plants in the present study.