Abstract

We recorded the far- and near-UV circular dichroism (CD) spectra of solutions of α-chymotrypsin and sodium dodecyl sulfate (SDS) with the final surfactant concentration significantly above the critical micellization concentration. Solutions were prepared using three different procedures. The reference procedure was to mix the chymotrypsin solution with the SDS solution once, immediately achieving the final SDS concentration. In alternative procedures, the protein solutions initially contained some SDS and were mixed with pure SDS solutions at a concentration to provide the same final surfactant as the reference mixing. We demonstrate that the supplementation to the selected final concentration of SDS of the pure chymotrypsin solution leads to different CD spectra than the supplementation to this final concentration of SDS in the chymotrypsin solution containing a small concentration of a few millimolar SDS. These differences disappear when the initial concentration of SDS in the protein solution, which we then supplement to the indicated final concentration, is higher. This suggests the irreversibility of the processes caused by the addition of SDS to chymotrypsin and the influence of the initial amount of this surfactant on the processes occurring with its further addition to the solution. For quantitative analysis of far-UV CD spectra in terms of populations of protein secondary structure elements, we used four well-established software packages. All programs consistently indicate that the observed differences in the far-UV CD spectra can be explained by the differences in the increase in the population of helical forms in chymotrypsin under the influence of SDS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call