The height of water-conducting fracture zones (WCFZs) is vital for the prevention of water, gas, and roof accidents in coal mines. However, its dynamic evolution law and maximum height are difficult to be obtained by traditional prediction methods, especially for conditions in which there is high overburden caving strength and a thick coal seam. Therefore, taking the 150,313 fully mechanized caving working face in Yingying Coal Mine as a background, according to the principle of optimized processes, a new predicting approach based on the Brillouin optical time-domain reflectometry (BOTDR) is proposed. Firstly, we estimated the height through empirical formula calculation, theoretical analysis, and similar model simulation tests. Secondly, we studied the optimized layout of optical cables in the overburden in detail for predicting the maximum height of the WCFZ and keeping the cables in good performance during field prediction. Thirdly, we researched and optimized the borehole parameters, optical fiber selection, and the special protection measures. Finally, we applied the aforementioned optimized outcomes in the field experiment to dynamically predict the height of the WCFZ. As a result of the field experiment, the distribution characteristics of optical fiber strain, the maximum height, and the evolution law of the WCFZ were obtained through the regular monitoring of fiber strain using BOTDR. The experiment demonstrated that its maximum height is consistent with the results studied indoors. The validation and feasibility of the approach proposed in this paper were verified via the aforementioned studies. The research in this paper has good reference value and important significance for predicting the height of the WCFZ using BOTDR in coal mines with similar geological and productive conditions.
Read full abstract