<span lang="EN-US">This paper investigates, for the first time, the accuracy of normalized power curves (NPCs), often used to incorporate uncertainties related to wind and solar power generation, when integrating renewable distributed generation (RDG), in the radial distribution system (RDS). In this regard, the present study proposes a comprehensive, simple, and more accurate model, for estimating the expected hourly solar and wind power generation, by adopting a purely probabilistic approach. Actually, in the case of solar RDG, the proposed model allows the calculation of the expected power, without going through a specific probability density function (PDF). The validation of this model is performed through a case study comparing between the classical and the proposed model. The results show that the proposed model generates seasonal NPCs in a less complex and more relevant way compared to the discrete classical model. Furthermore, the margin of error of the classical model for estimating the expected supplied energy is about 12.6% for the photovoltaic (PV) system, and 9% for the wind turbine (WT) system. This introduces an offset of about 10% when calculating the total active losses of the RDS after two RDGs integration.</span>