Abstract

The purpose of this paper is to examine the influence of geotechnical uncertainties on the reliability of vertically loaded pile foundations and the use of this information in decision-making support, especially when gathering the information necessary for reliability analyses. Two case studies of single pile foundations were selected, and each uncertainty source was investigated to identify which are the most important and influential in the evaluation of vertical pile resistance under axial loading. Reliability sensitivity analyses were conducted using FORM (the first-order reliability method) and MCS (Monte Carlo simulations). The characterisation of uncertainties is not an easy task in geotechnical engineering. The aim of the analyses described in this paper is to optimise resources and investments in the investigation of the variables in pile reliability. The physical uncertainties of actions, the inherent variability of soil and model error were assessed by experimental in situ standard penetration tests (SPT) or from information available in the literature. For the cases studied, the sensitivity analysis results show that, in spite of the high variability of the soils involved, model error also plays a very important role in geotechnical pile reliability and was considerably more important than soil variability in both case studies. From a comparison of the two reliability methods (FORM and MCS), it was concluded that FORM is applicable in simple cases and as a first approach because it is an approximate method and sometimes does not have the capability to incorporate every detail of the problem, namely a specific probability density function or more specific limit conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.