Trikafta modulators have been approved by the FDA to treat the most common cystic fibrosis- causing mutation F508del CFTR. However, the molecular action mechanisms of these modulators are still unknown. Following the identification of the gating center in CFTR, this study further revealed that the specific noncovalent interactions of the phosphorylated S813 site with cytoplasmic loops 1 and 4 and N-/C- terminal tails of TMD1 upon Trikafta-triggered tight TMD1- TMD2 interactions at the gating center play a pivotal role in rescuing the primary gating defect and then the thermal defect of F508del CFTR. Trikafta strengthened TMD1-TMD2 interactions at the gating center of ΔF508-CFTR Tight TMD1-TMD2 interactions allowed specific interactions of the R domain with the ICL1- ICL4 interface and the N-/C- terminal tails of TMD1 Subsequently, the C-terminal region was released from NBD1 for tight ATP-dependent NBD1-NBD2 dimerization, stabilizing NBD1 of ΔF508-CFTR.
Read full abstract