Abstract

Understanding the role of solvent in translating molecular anisotropy to supramolecular polymers is in the early stages. A solvent's influence on the strength of different noncovalent interactions can explain anisotropic growth in some cases, but its effect on cooperative processes, particularly in mixed solvents, remains obscure. We report the self-assembly of a series of chiral perylene bisimides in water-cosolvent mixtures, and the results highlight the fascinating influence of solvent-solute interactions on supramolecular anisotropy, both chiral and morphological. The initial assembly is agnostic to solvent composition, resulting in weakly chiral, spherical nanostructures. In an extremely narrow solvent composition range, the nanospheres transform into long, prominently chiral supramolecular polymers. Further, chirality can be fully reversed by changing the good (achiral) cosolvent. We elucidate how solvent modulates specific noncovalent interactions and governs the kinetics and thermodynamics of key processes, such as spontaneous phase segregation, secondary nucleation, and cooperative growth. In the context of supramolecular polymerization, our results encourage one to steer the focus away from the physical attributes of a solvent (polarity, phase diagram, etc.) and toward the complexities of solvent-solute interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.