Spermidine has broad application potential in food, medicine and other fields. In this study, a novel Bacillus amyloliquefaciens cell factory was constructed for production of spermidine from renewable biomass resources. Firstly, the speB gene was found to be optimal for synthesis of spermidine, and the function of SpeB was explained by amino acid sequence analysis and molecular docking. By replacing the native promoter of the speEB operon with the P43, the synthesis of spermidine was significantly enhanced in B. amyloliquefaciens HSPM1-P43speEB. After knockout of the genes yobN and bltD associated with spermidine degradation, the spermidine titer of the strain HSPM2 was further improved to 115.96mg/L, increased by 108% compared to HSPM1-P43speEB. Subsequently, the titer of spermidine was further increased to 277.47mg/L through enhancing the supply of the precursor methionine by overexpression of speD. Finally, the renewable biomass resources, xylose and feather meal were optimized to produce spermidine, and the maximum titer is up to 588.10mg/L after optimization. In conclusion, an efficient spermidine producing B. amyloliquefaciens was constructed through combinatorial metabolic engineering strategies, and the sustainable production of spermidine was achieved using the biomass resources of xylose and feather meal.
Read full abstract