Abstract

Iron (Fe) deficiency often triggers arginine overproduction in plants. However, it remains elusive whether Fe deficiency-induced increases of arginine levels are involved in beneficial rhizobacteria recruitment and that the mechanism underlying rhizobacteria induced plant Fe deficiency tolerance. Here, Bacillus subtilis STU6 increased soluble Fe content in tomato, thereby alleviating Fe deficiency-induced chlorosis. In a split-root system, STU6 significantly induced arginine exudation by Fe-deficient roots, and increased arginine levels promoted spermidine (Spd) production by STU6 and bacterial colonization. Deletion of the STU6 speB gene inhibited Spd synthesis and abrogated STU6-induced increments of soluble Fe content in the Fe-deficient plants. Increased host Spd levels by STU6 greatly stimulated the NO accumulation in the Fe-deficient roots. Furthermore, disruption of NO signaling markedly repressed STU6-mediated cell wall Fe remobilization. Collectively, our data provide important evidence that chemical dialogues between tomato and STU6 contribute to enhancement of microbe-mediated plant adaptation to Fe deficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.