To separately quantify sensitivity differences in patient-specific quality assurance comparisons analyzed with the gamma comparison for different measurement geometries, spatial samplings, and delivery techniques [intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT)]. Error-free calculations for 20 IMRT and 20 VMAT cases were compared to calculations with known induced errors of varying magnitudes, using gamma comparisons. Five error types (MU scaling, three different MLC errors, and collimator errors) were induced in plan calculations on three different detector geometries - ArcCHECK, MapCHECK, and Delta 4. To study detector geometry sensitivity effects alone, gamma comparisons were made with 1mm error-free calculations compared to 1mm error-induced calculations for each device. Effects of spatial sampling were studied by making the same gamma comparisons, but down-sampling the error-induced calculations to the real spatial sampling of each device. Additionally, 1mm vs 1mm comparisons between the IMRT and VMAT cases were compared to investigate sensitivity differences between IMRT and VMAT using IMRT and VMAT cohorts with similar ranges of plan complexity and average aperture size. For each case, induced error type, and device, five different gamma criteria were studied to ensure sensitivity differences between devices, spatial sampling scenarios, and delivery technique were not gamma criterion specific, resulting in over 36,000 gamma comparisons. For IMRT cases, Delta4 and MapCHECK devices had similar error sensitivities for lagging leaf, bank shift, and MU errors, while the ArcCHECK had considerably lower sensitivity than the planar-type devices. For collimator errors and perturbational leaf errors the ArcCHECK had higher error sensitivity than planar-type devices. This behavior was independent of gamma parameters (percent dose difference, distance-to-agreement, and low dose threshold), though use of local normalization resulted in error sensitivites that were markedly similar between all three devices. Differences between detector geometries were less pronounced for VMAT deliveries. Error sensitivity for a given gamma criterion when comparing IMRT and VMAT deliveries on the same devices showed that VMAT plans were more sensitive to some specific error types and less sensitive to others, when compared to IMRT plans. For the ArcCHECK device, the sensitivity of IMRT and VMAT cases was quite similar, whereas this was not the case for the planar-type devices. When comparing error sensitivity between 1mm vs 1mm calculations and 1mm vs the real spatial sampling for each device, results showed that increased spatial sampling did not systematically increase error sensitivity. Noticeable differences in error sensitivity were observed for different detector geometries, but differences were dependent on induced error type, and a particular device geometry did not offer universal improvements in error sensitivity across studied error types. This study demonstrates that the sensitivity of the gamma comparison does not largely hinge on detector spatial sampling. VMAT deliveries were generally less sensitive to errors when compared to IMRT plans for the planar-type devices, while similar sensitivities were observed between delivery techniques for the ArcCHECK device. Results of this work suggest that a universal gamma criterion is inappropriate for IMRT QA and that the percent pixels passing is an insufficient metric for evaluating quality assurance checks in the clinic.
Read full abstract