Abstract

The forecasting of high-dimensional, spatiotemporal nonlinear systems has made tremendous progress with the advent of model-free machine learning techniques. However, in real systems it is not always possible to have all the information needed; only partial information is available for learning and forecasting. This can be due to insufficient temporal or spatial samplings, to inaccessible variables, or to noisy training data. Here, we show that it is nevertheless possible to forecast extreme event occurrences in incomplete experimental recordings from a spatiotemporally chaotic microcavity laser using reservoir computing. Selecting regions of maximum transfer entropy, we show that it is possible to get higher forecasting accuracy using nonlocal data vs local data, thus allowing greater warning times of at least twice the time horizon predicted from the nonlinear local Lyapunov exponent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.