Small numbers are processed faster through left-sided than right-sided responses, whereas large numbers are processed faster through right-sided than left-sided responses [i.e., the Spatial–Numerical Association of Response Codes (SNARC) effect]. This effect suggests that small numbers are mentally represented on the left side of space, whereas large numbers are mentally represented on the right side of space, along a mental number line. The SNARC effect has been widely investigated along the horizontal Cartesian axis (i.e., left–right). Aleotti et al. (Cognition 195:104111, 2020), however, have shown that the SNARC effect could also be observed along the vertical (i.e., small numbers-down side vs. large numbers-up side) and the sagittal axis (i.e., small numbers-near side vs. large numbers-far side). Here, we investigated whether the three Cartesian axes could interact to elicit the SNARC effect. Participants were asked to decide whether a centrally presented Arabic digit was odd or even. Responses were collected through an ad hoc-made response box on which the SNARC effect could be compatible for one, two, or three Cartesian axes. The results showed that the higher the number of SNARC-compatible Cartesian axes, the stronger the SNARC effect. We suggest that numbers are represented in a three-dimensional number space defined by interacting Cartesian axes.
Read full abstract