Accurate traffic flow prediction in road networks is essential for intelligent transportation systems (ITS). Since traffic data are collected from the road network with spatial topological and time series sequences, the traffic flow prediction is regarded as a spatial–temporal prediction task. With the powerful ability to model the non-Euclidean data, the graph convolutional network (GCN)-based models have become the mainstream framework for traffic forecasting. However, existing GCN-based models either use the manually predefined graph structure to capture the spatial features, ignoring the heterogeneity of road networks, or simply perform 1-D convolution with fixed kernel to capture the temporal dependencies of traffic data, resulting in insufficient long-term temporal feature extraction. To solve those issues, a spatial–temporal correlation constrained dynamic graph convolutional network (STC-DGCN) is proposed for traffic flow forecasting. In STC-DGCN, a spatial–temporal embedding encoder module (STEM) is first constructed to encode the dynamic spatial relationships for road networks at different time steps. Then, a temporal feature encoder module with heterogeneous time series correlation modeling (TFE-HCM) and a spatial feature encoder module with dynamic multi-graph modeling (SFE-DCM) are designed to generate dynamic graph structures for effectively capturing the dynamic spatial and temporal correlations. Finally, a spatial–temporal feature fusion module based on a gating fusion mechanism (STM-GM) is proposed to effectively learn and leverage the inherent spatial–temporal relationships for traffic flow forecasting. Experimental results from three real-world traffic flow datasets demonstrate the superior performance of the proposed STC-DGCN compared with state-of-the-art traffic flow forecasting models.