Abstract

Optical flow estimation is a challenging task consisting of predicting per-pixel motion vectors between images. Recent methods have employed larger and more complex models to improve the estimation accuracy. However, this impacts the widespread adoption of optical flow methods and makes it harder to train more general models since the optical flow data is hard to obtain. This paper proposes a small and efficient model for optical flow estimation. We design a new spatial recurrent encoder that extracts discriminative features at a significantly reduced size. Unlike standard recurrent units, we utilize Partial Kernel Convolution (PKConv) layers to produce variable multi-scale features with a single shared block. We also design efficient Separable Large Kernels (SLK) to capture large context information with low computational cost. Experiments on public benchmarks show that we achieve state-of-the-art generalization performance while requiring significantly fewer parameters and memory than competing methods. Our model ranks first in the Spring benchmark without finetuning, improving the results by over 10% while requiring an order of magnitude fewer FLOPs and over four times less memory than the following published method without finetuning. The code is available at github.com/hmorimitsu/ptlflow/tree/main/ptlflow/models/rpknet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.