In this study, we present a weakly L-stable convergent time integration formula of order N1>3 (N1∈Z is odd) to solve Burgers' equation. The time integration formula for the initial value problem w′(t)=f(t,w),w(t0)=η0 is formulated using backward explicit Taylor series approximation of order (N1−1) and Hermite approximation polynomial of order (N1−2). We convert the Burgers' equation into the initial value problem using the nonstandard finite difference scheme for spatial derivatives and implement the derived integration formula. The nonstandard finite difference scheme makes it possible to choose several denominator functions. The method's convergence, stability and truncation error are also discussed. To show the correctness and effectiveness of the proposed technique, we present numerical solutions, ‖e‖2 and ‖e‖∞ error norms in several tables and figures. Additionally, the numerical outcomes are compared with the results of some existing techniques and exact solutions.
Read full abstract