AbstractThis paper considers the problem of localizing a group of targets whose number is unknown by wireless sensor networks. At each time slot, to save energy and bandwidth resources, only part of sensor nodes are scheduled to activate to remain continuous monitoring of all the targets. The localization problem is formulated as a sparse vector recovery problem by utilizing the spatial sparsity of targets’ location. Specifically, each activated sensor records the RSS values of the signals received from the targets and sends the measurements to the sink node where a compressive sampling‐based localization algorithm is conducted to recover the number and locations of targets. We decompose the problem into two sub‐problems, namely, which sensor nodes to activate, and how to utilize the measurements. For the first subproblem, to reduce the effect of measurement noise, we propose an iterative activation algorithm to re‐assign the activation probability of each sensor by exploiting the previous estimate. For the second subproblem, to further improve the localization accuracy, a sequential recovery algorithm is proposed, which conducts compressive sampling on the least squares residual of the previous estimate such that all the previous estimate can be utilized. Under some mild assumptions, we provide the analytical performance bound of our algorithm, and the running time of proposed algorithm is given subsequently. Simulation results demonstrate the effectiveness of our algorithms.Copyright © 2013 John Wiley & Sons, Ltd.
Read full abstract