Urban railway track infrastructures often suffer from damage that affects their service performance due to a variety of factors. In this study, an unsupervised feature selection and damage identification method based on globally sparse probabilistic principal component analysis (PCA) is proposed for urban railway tracks using the monitoring data of train-induced dynamic responses. A Bayesian framework is proposed for generating principal components on a basis of vectors (original variables) with a global sparseness pattern instead of separate patterns in a traditional sparse PCA. In this framework, a variational expectation-maximization algorithm is employed to obtain the tractable calculation of the marginal likelihood function for learning all uncertain parameters of the Bayesian model. The obtained principal components are linear combinations of the very same set of important variables, making our method better interpretable than the traditional sparse PCA. We can clearly understand which original variables are most relevant for describing the data. The track damage is identified simply by discriminating the corresponding measured dynamic responses using the binary elements of the latent vector inferred from the Bayesian globally sparse PCA algorithm. The usefulness is demonstrated by successfully identifying the track bed plate crack damage through the actual train-induced dynamic responses collected from the structural health monitoring system of an urban railway track infrastructure, where the method is able to achieve F1 scores of 90% or higher for various scenarios.
Read full abstract