Abstract

Wind power is a popular renewable energy source, and the accurate prediction of wind speed plays an important role in improving the power generation efficiency of wind turbines and ensuring the normal operation of wind power equipment. Due to the instability and randomness of wind speed, it is difficult to achieve accurate prediction by traditional prediction methods. To improve the power generation efficiency of wind turbines and realize the predictability of wind speed, a hybrid wind speed prediction model based on GRUs (gated recurrent units) was constructed in this paper based on a deep neural network and feature extraction method. The hybrid model feature extraction module was implemented based on a combination of Tsfresh (a python package for time series feature extraction) and sparse PCA (sparse principal component analysis), and the network structure and other hyperparameters of the GRU module were determined through experiments. The model was validated using actual wind measurement data from a wind farm on the west coast of the United States. The results showed that the proposed model had less computational time and higher computational accuracy than the SARIMAX (seasonal auto-regressive integrated moving average with exogenous factors) and LSTM (long short-term memory) models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call