We consider a reaction diffusion equation ut = Δu + f(x, u) in ℝN with initial data in the locally uniform space [Formula: see text], q ∈ [1, ∞), and with dissipative nonlinearities satisfying s f(x, s) ≤ C(x)s2 + D(x) |s|, where [Formula: see text] and [Formula: see text] for certain [Formula: see text]. We construct a global attractor [Formula: see text] and show that [Formula: see text] is actually contained in an ordered interval [φm, φM], where [Formula: see text] is a pair of stationary solutions, minimal and maximal respectively, that satisfy φm ≤ lim inft→∞ u(t; u0) ≤ lim supt→∞ u(t; u0) ≤ φM uniformly for u0 in bounded subsets of [Formula: see text]. A sufficient condition concerning the existence of minimal positive steady state, asymptotically stable from below, is given. Certain sufficient conditions are also discussed ensuring the solutions to be asymptotically small as |x| → ∞. In this case the solutions are shown to enter, asymptotically, Lebesgue spaces of integrable functions in ℝN, the attractor attracts in the uniform convergence topology in ℝN and is a bounded subset of W2,r(ℝN) for some r > N/2. Uniqueness and asymptotic stability of positive solutions are also discussed. Applications to some model problems, including some from mathematical biology are given.