Abstract
Let X be a Banach space, (Ω,Σ) a measurable space and let m : Σ → X be a (countably additive) vector measure. Consider the corresponding space of integrable functions L1(m). In this paper we analyze the set of (countably additive) vector measures n satisfying that L1(n) = L1(m). In order to do this we define a (quasi) order relation on this set to obtain under adequate requirements the simplest representation of the space L1(m) associated to downward directed subsets of the set of all the representations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have