Soybean crop has contributed to improve the financial strength of the Indian farmers. It usually fetches higher income to the farmers owing to the massive export market for Soybean de-oiled cake. In state of Maharashtra Soybean is cultivated extensively in Amravati district. So the present studies explore the seasonality and price forecasting issue for Soybean crop. The is based on the secondary data. The monthly wholesale prices and arrivals data for the study collected from the agmarknet.gov.in for the period January 2008 to December 2017. To analyze the data we use statistical techniques like seasonality and exponential smoothing for price forecasting. The processing of data is done through MS- Excel and MINITAB Software. The study gives an overview of the different time series analytical methods, which can be used for price forecasting. The present study is undertaken precisely to fill the research gap and results of this study found an inverse relationship between price and market arrivals of soybean. The arrivals were recorded very high from October to January and seasonal indices of price were elevated during August in which arrivals were found stumpy. The assessment of all three Exponential Smoothing models was carried out in the procedure based on the Double Exponential model with MAD (168.3) and MAPE (6.14) values, which were considered in the smallest amount. The accuracy of proportion among the forecasted and actual price value of soybean was found in between 80.52 to 85.55 percent. It was pragmatic that the Double Exponential model was the most appropriate for forecasting the soybean.
Read full abstract