Single, dominant resistance genes have been used successfully for the past 15 years to control common rust, caused by Puccinia sorghi, on sweet corn in the United States. Most sweet corn hybrids grown in the Midwest for mid- to late-season processing have Rp resistance, which is expressed as hypersensitive reactions resulting in chlorotic or necrotic flecks with little or no formation of urediniospores. Many, but not all, Rp-resistant sweet corn hybrids carry the gene Rp1D. Biotypes of P. sorghi in North America have been avirulent on plants with the Rp1D gene, except for an isolate collected in Kansas in 1990 (1). In a sweet corn nursery in Urbana, IL, in 1997, small uredinia of P. sorghi occurred on 27 of 79 Rp-resistant sweet corn hybrids that also were infected severely with southern rust caused by P. polysora (2). During August and September 1999, small uredinia or fully susceptible reactions to common rust were observed on several Rp-resistant sweet corn hybrids grown in an area bounded by Mendota, IL, Ripon, WI, and Le Sueur, MN. Southern rust also was prevalent and frequently severe in the area. Isolates of P. sorghi from Rp-resistant corn were collected during September 1999 from Mendota, Rock Falls, and Dekalb, IL; Sun Prairie, Madison, and Ripon, WI; and Rochester, Stanton, and Le Sueur, MN. Ten two-leaved seedlings of one susceptible sweet corn hybrid and five Rp-resistant hybrids, including hybrids known to carry the gene Rp1D, were inoculated in greenhouse trials. Each location (collection) was a separate trial. Inocula were prepared from several uredinia of P. sorghi per location. One set of seedlings also was inoculated with P. polysora. Susceptible reactions (uredinia with urediniospores) were observed on all inoculated seedlings. Uredinia and urediniospores of P. sorghi and P. polysora from seedlings inoculated in the greenhouse were compared directly. All isolates of P. sorghi were confirmed based on 6- to 7-day latent periods, formation of uredinia on both leaf surfaces, and urediniospores that were mostly spherical, cinnamon colored, and moderately echinulate. This is the first widespread occurrence in North America of a biotype of P. sorghi that is virulent on Rp-resistant sweet corn.
Read full abstract