Abstract

This project aimed to determine if a dual-purpose bacterial inoculant could mitigate potential adverse effects of increasing levels of rust infestation on the quality, aerobic stability, and safety of corn silage. Corn plants with no rust infestation (NR), or medium (all leaves on the lower half of the plant affected, MR), or high (all leaves affected, HR) levels of southern rust infestation were harvested at random locations on a field, chopped, and ensiled without (control, CON) or with a dual-purpose inoculant applied at a rate that supplied 1×105cfu/g of Pediococcus pentosaceus 12455 and 4×105cfu/g of Lactobacillus buchneri 40788. Each treatment was prepared in quadruplicate in 20-L mini silos and ensiled for 97 d. As the level of rust infestation increased, the concentrations of dry matter (DM) and neutral detergent fiber increased, whereas DM digestibility decreased by up to 16%. Control HR silages also had lower 24-h neutral detergent fiber digestibility (NDFD; 36.2% of DM) than CON MR (39.8%) or NR silages (38.1%). Inoculation increased the NDFD of NR (43.4%) and MR silages (45.7%) but not HR silages (33.0%). Concentrations of lactate and volatile fatty acids decreased with increasing rust infestation in CON silages, but this trend was absent in inoculated silages. In HR silages, inoculation increased aerobic stability by 75% (77.3 vs. 44h), and prevented production of aflatoxin (5.2 vs. 0mg/kg). The concentration of aflatoxin in uninoculated HR silages exceeded action levels stipulated by the US Food and Drug Administration. In conclusion, increasing rust infestation was associated with reductions in the nutritive value and fermentation of corn silage. Inoculation reduced adverse effects of rust infestation on the fermentation, increased 24-h NDFD of NR and MR silages, and decreased aerobic spoilage and aflatoxin production in HR silages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.