Model error is a major obstacle for enhancing the forecast skill of El Nino-Southern Oscillation (ENSO). Among three kinds of model error sources—dynamical core misfitting, physical scheme approximation and model parameter errors, the model parameter errors are treatable by observations. Based on the Zebiak-Cane model, an ensemble coupled data assimilation system is established to study the impact of parameter optimization (PO) on ENSO predictions within a biased twin experiment framework. “Observations” of sea surface temperature anomalies drawn from the “truth” model are assimilated into a biased prediction model in which model parameters are erroneously set from the “truth” values. The degree by which the assimilation and prediction with or without PO recover the “truth” is a measure of the impact of PO. Results show that PO improves ENSO predictability—enhancing the seasonal-interannual forecast skill by about 18 %, extending the valid lead time up to 33 % and ameliorating the spring predictability barrier. Although derived from idealized twin experiments, results here provide some insights when a coupled general circulation model is initialized from the observing system.
Read full abstract