PurposeThe purpose of this paper is to present an automated ontology mapping and merging algorithm, namely OntoDNA, which employs data mining techniques (FCA, SOM, K‐means) to resolve ontological heterogeneities among distributed data sources in organizational memory and subsequently generate a merged ontology to facilitate resource retrieval from distributed resources for organizational decision making.Design/methodology/approachThe OntoDNA employs unsupervised data mining techniques (FCA, SOM, K‐means) to resolve ontological heterogeneities to integrate distributed data sources in organizational memory. Unsupervised methods are needed as an alternative in the absence of prior knowledge for managing this knowledge. Given two ontologies that are to be merged as the input, the ontologies' conceptual pattern is discovered using FCA. Then, string normalizations are applied to transform their attributes in the formal context prior to lexical similarity mapping. Mapping rules are applied to reconcile the attributes. Subsequently, SOM and K‐means are applied for semantic similarity mapping based on the conceptual pattern discovered in the formal context to reduce the problem size of the SOM clusters as validated by the Davies‐Bouldin index. The mapping rules are then applied to discover semantic similarity between ontological concepts in the clusters and the ontological concepts of the target ontology are updated to the source ontology based on the merging rules. Merged ontology in a concept lattice is formed.FindingsIn experimental comparisons between PROMPT and OntoDNA ontology mapping and merging tool based on precision, recall and f‐measure, average mapping results for OntoDNA is 95.97 percent compared to PROMPT's 67.24 percent. In terms of recall, OntoDNA outperforms PROMPT on all the paired ontology except for one paired ontology. For the merging of one paired ontology, PROMPT fails to identify the mapping elements. OntoDNA significantly outperforms PROMPT due to the utilization of FCA in the OntoDNA to capture attributes and the inherent structural relationships among concepts. Better performance in OntoDNA is due to the following reasons. First, semantic problems such as synonymy and polysemy are resolved prior to contextual clustering. Second, unsupervised data mining techniques (SOM and K‐means) have reduced problem size. Third, string matching performs better than PROMPT's linguistic‐similarity matching in addressing semantic heterogeneity, in context it also contributes to the OntoDNA results. String matching resolves concept names based on similarity between concept names in each cluster for ontology mapping. Linguistic‐similarity matching resolves concept names based on concept‐representation structure and relations between concepts for ontology mapping.Originality/valueThe OntoDNA automates ontology mapping and merging without the need of any prior knowledge to generate a merged ontology. String matching is shown to perform better than linguistic‐similarity matching in resolving concept names. The OntoDNA will be valuable for organizations interested in merging ontologies from distributed or different organizational memories. For example, an organization might want to merge their organization‐specific ontologies with community standard ontologies.
Read full abstract