The aim of this study was to investigate the immunodulatory properties of dental pulp stem cells derived from healthy (SCD) and inflamed pulp deciduous (SCDIP) tissues. The overall hypothesis is that SCDIP possess equal immune properties with SCD and could be used as an alternative tissue source in regenerative medicine. An intra-oral examination was carried out to assess the status of the pulp tissues and group them according to healthy or inflamed. Primary cells were established from these groups, and basic mesenchymal stem cells (MSC) characterizations were conducted. The expression of human leukocyte antigen (HLA), namely HLA-G, HLA-DR, and HLA-ABC were examined in both cell lines using flow cytometry. We further compared the immunosuppressive effects of SCD and SCDIP on phytohemagglutinin-induced T cell proliferation. Supernatants were tested for cytokine profiling using multiplex array. While SCD exhibited typical MSC characteristics, SCDIP on the other hand, did not. Compared with SCDIP, SCD effectively suppresses mitogen-induced T cells proliferation in a dose-dependent manner, as well as express a higher percentage of HLA-ABC and HLA-G. In addition, levels of several cytokines, such as TNF-α, TNF-β, and IL-2, were drastically suppressed in SCD than SCDIP. Furthermore, a high level of IL-10, an important anti-inflammatory cytokine, was present in SCD compared with SCDIP. These findings suggest that SCDIP is highly dysfunctional in terms of their stemness and immunomodulatory properties. SCDIP is not a viable therapeutic cell source especially when used in graft versus host disease (GvHD) and organ rejection.