Error analysis and estimation of thunder source location results is a prerequisite for obtaining accurate location results of thunder sources, which is of great significance for a deeper understanding of the physical process of lightning channel discharges. Most of the thunder source location algorithms are based on the simplified model of the straight-line propagation of acoustic waves to determine the location of the thunder source; however, the acoustic wave is affected by the inhomogeneity of the atmosphere medium in the propagation process and its acoustic ray will be bent. Temperature and humidity are the main factors affecting the vertical distribution of the velocity of sound in the atmosphere, therefore, it is necessary to study the changes in location errors under the models of uniform vertical distribution of temperature only and uniform vertical distribution of humidity only. This paper focuses on the theory of acoustic ray-tracing in neglecting the presence of the wind and the acoustic attenuation and the theoretical derivation of the location error of thunder source inversion for the three models is carried out by using MATLAB R2019b programming. Then, simulation analysis and comparative study on the variation law of thunder source location error with the height of the source, ground temperature, ground humidity, and array position under the three models are carried out. The results of the study show that the maximum location error can be obtained from the straight-line propagation model, the location error obtained from the model of uniform vertical distribution of temperature only is the second, and the location error obtained from the model of uniform vertical distribution of humidity only is the least and can be negligible compared to the first two models. In the trend of error variation, the variation of location error with temperature and humidity is relatively flat in the first two models; however, the variation of location error with the height of the thunder source is more drastic, which can be more than 80%. The location error obtained from the array inversion closer to the thunder source increases linearly with the height of the thunder source, the location error obtained from the more distant array inversion shows a fast-decreasing trend at the height of the thunder source from 500 to 3500 m, and a flat trend above 3500 m. The location error varies relatively smoothly with the height of the thunder source, the ground temperature, and the ground humidity in the model of uniform vertical distribution of humidity only. In addition, the position of the array also has an important effect on lightning location. The further the horizontal distance from the source, the greater the location error will be obtained in the first two models, and when the thunder source is at a low height and detected at a long distance, the location error will be very large, so relevant data should be modified in actual observation.