Mine water surge is one of the main safety risks in coal mines. This research offers a novel mine water source identification model (BO-CatBoost) to successfully avoid and control mine sudden water catastrophes by properly identifying the sources of mine water. First, the classification model is trained and built using the Categorical Boosting (CatBoost) algorithm. The Gaussian process Bayesian optimization (BO) algorithm is used to optimize parameters, and the optimal parameter combination is integrated into the CatBoost algorithm to build the BO-CatBoost mine water source identification model, which further improves the accuracy of mine water source identification. The model was also applied to the Pingdingshan mine to verify the practicality of the model. Then, 29 groups of unknown water sources in Pingdingshan were selected as validation samples for the model and compared with the conventional CatBoost, Light Gradient Boosting Machine (LightGBM), and Extreme Gradient Boosting (Xgboost) models. The comparison results demonstrate that the accuracy of LightGBM, Xgboost, CatBoost, and BO-CatBoost models can reach 69%, 79.3%, 79.3%, and 100% respectively, and the RMSE is 0.947, 0.643, 0.719, and 0.0 respectively. The comprehensive analysis shows that, when it comes to mine water source detection, the BO-CatBoost model performs noticeably better than other models in terms of discriminative accuracy and generalization capacity. Lastly, the multi-output prediction and decision-making process of the BO-CatBoost water source identification model is visualized by the interpretability analysis performed with the SHAP approach. The research demonstrates that the BO-CatBoost model can more precisely and impartially identify mine water sources, offering fresh concepts for mine water source detection.