Abstract

Abstract Mine water inrush is a major type of disaster in coal mine production in China. It causes heavy casualties and serious economic losses and threatens coal mine safety. To quickly and accurately identify mine water inrush source, according to the hydrochemical characteristics of different aquifers in the Donghuantuo mining area, this paper systematically analyzes the hydraulic connection of the aquifers in main coal mining areas before and after mining activities. Four types of hydrochemical data were collected: No. 5 coal seam roof water, No. 8 coal seam roof water, No. 122 coal seam floor water, and No. 1214 coal seam aquifer water in the Donghuantuo mining area. In addition, based on the hydrochemical data, the parameter selection of LightGBM was optimized by Particle Swarm Optimization (PSO) and constructed the PSO-LightGBM water inrush source identification model. The recognition accuracy of PSO-LightGBM model was compared with LightGBM model, classification regression tree (CART) model, and random forest (RF) model. The results showed that coal mining activities would have a significant impact on the water quality characteristics of the roof sandstone fissure water of No. 5 coal mine. Mining activities had a certain impact on the accuracy of the identification model. In addition, compared with the four recognition models, PSO-LightGBM model had the highest recognition accuracy of 97.22%. It showed that the model had high accuracy, stability, generalization ability, and important reference value for the identification of mine water inrush source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call