Sorghum forage was ensiled for 90 days at two dry matter (DM) contents (27 vs. 39%) without or with Lactiplantibacillus plantarum inoculation. On day 90 of fermentation, silages were sampled to assess the microbial community dynamics and metabolome profile. L. plantarum inoculation improved silage quality, as shown by a lower pH and greater acetic acid concentration. Loss of DM remained unaffected by L. plantarum inoculation but was greater in low- vs. high-DM sorghum silages (14.4 vs. 6.62%). The microbiome analysis revealed that Pseudomonas congelans represented the dominant species of the epiphytic microbiota in both low- and high-DM sorghum forage before ensiling. However, L. buchneri represented the dominant species at the end of ensiling. Ensiling fermentation resulted in distinct metabolic changes in silages with varying DM content. In low-DM silages, ensiling fermentation led to the accumulation of 24 metabolites and a reduction in the relative concentration of 13 metabolites. In high-DM silages, ensiling fermentation resulted in an increase in the relative concentration of 26 metabolites but a decrease in the concentration of 8 metabolites. Compared to non-inoculated silages, L. plantarum inoculation resulted in an increased concentration of 3 metabolites and a reduced concentration of 5 metabolites in low-DM silages. Similarly, in high-DM silages, there was an elevation in the relative concentration of 3 metabolites, while a decrease in 7 other metabolites. Ten metabolites with bio-functional activity were identified, including chrysoeriol, isorhamnetin, petunidin 3-glucoside, apigenin, caffeic acid, gallic acid, p-coumaric acid, trans-cinnamic acid, herniarin, and 3,4-dihydroxy-trans-cinnamate. This study presents a comprehensive analysis of microbiome and metabolome profiling of sorghum forage during ensiling as a function of DM content and L. plantarum inoculation, with a particular emphasis on identifying metabolites that may possess bio-functional properties.Key points• DM loss was not different by L. plantarum but higher in low- vs. high-DM silage.• L. buchneri dominated ensiling, regardless of DM level.• 10 metabolites with bio-functional activity were identified.