Integrated CO2 capture and utilization (ICCU) is an emerging technology to reduce CO2 emissions by greatly simplifying the processes of conventional CO2 capture and utilization. In particular, ICCU-methanation could directly convert the low-concentration CO2 into CH4 using hydrogen from new energy electricity, representing an efficient Power-to-Gas route. CO2 adsorption/catalytic materials play a crucial role for the operation of ICCU-methanation, and it is more feasible to scale up material production and avoid components interference by directly combining the sorbent and catalyst. However, it is necessary to reveal the effect of different arrangements of sorbent and catalyst on reaction characteristics of ICCU-methanation. In the work, the matching of K2CO3-doped Li4SiO4 sorbent with various supported Ni-based catalyst was tested and four arrangements of sorbent and catalyst particles in a fixed-bed were investigated to understand the influences on ICCU-methanation. Results show that the presence of catalyst accelerates CO2 supply by sorbent and achieves quicker methanation, and the promotion effect becomes more obvious with a closer contact between the sorbent and catalyst. Under optimized conditions, ICCU-methanation of uniformly mixed K-Li4SiO4 and Ni/Al2O3 shows an excellent performance with very stable CO2 conversion of 95.58% and CH4 selectivity of 93.29% during cyclic reactions.
Read full abstract