The recovery of three rare earth (RE) metals ions [Yb(III), Dy(III) and Nd(III), belonging to heavy, mild and light REs, respectively] was investigated using hybrid chitosan-magnetic nano-based particles functionalized by diethylenetriamine (DETA). The effect of pH on sorption performance was analyzed: the optimum initial pH value was found close to 5 (equilibrium pH value close to 6.5). The nanometric size of sorbent particles (30–50 nm) minimized the contribution of resistance to intraparticle diffusion on the control of uptake kinetics, which is efficiently modeled using the pseudo-second order rate equation: under selected experimental conditions the contact time required for reaching equilibrium was less than 1 h. Sorption isotherms were efficiently modeled using the Langmuir equation: maximum sorption capacities reached about 50 mg metal g−1, regardless of the RE. The temperature had a very limited effect on sorption capacity (in the range 300–320 K). The thermodynamic parameters were determined: the sorption was endothermic (positive values of ΔH°), spontaneous (negative values of ΔG°) and contributed to increasing the disorder of the system (positive values of ΔS°). The three REs have similar sorption properties on DETA-functionalized chitosan magnetic nano-based particles: the selective separation of these elements seems to be difficult. The sorbed metal ions can be removed from loaded sorbents using thiourea, and the sorbent can be recycled for at least five sorption/desorption cycles with a limited loss in sorption performance (by less than 6 %). The saturation magnetization was close to 20 emu g−1; this means that nano-based superparamagnetic particles can be readily recovered by an external magnetic field, making the processing of these materials easy.