The songs of migratory passerine birds have a key role in mate attraction and territory defence during the breeding season. Many species also sing on their wintering grounds, but the function of this behaviour remains unclear. One possible explanation, proposed by the song improvement hypothesis, is that the birds take advantage of this period to develop their singing skills for the next breeding season. If so, non-breeding songs should reflect features of an early phase in song development, characterized by high vocal plasticity. In our study, we tested this prediction by comparing songs of thrush nightingales (Luscinia luscinia) recorded at two different breeding areas in Europe and one wintering area in Africa. While all songs from European localities had a typical structure characteristic of the study species, 89% of the songs recorded from Africa were highly variable, lacking such typical structure. We conducted further detailed analysis of breeding and winter songs that exhibited species-specific structure. First, we explored plasticity at the syllable level using a cross-correlation analysis, to obtain similarity scores as a measure of consistency. Second, we asked multiple human observers to quantify element variability. Our results showed significant differences in syllable consistency between breeding and wintering grounds, with more consistent delivery of syllables in the breeding areas. Likewise, element variability was substantially lower in the breeding populations. While both results fit the predictions of the song improvement hypothesis, more research is needed to elucidate the roles of singing on the wintering grounds. Many migratory songbirds sing on their wintering grounds, outside the breeding period. While the role of singing during breeding has been broadly studied, our understanding of the function of winter singing remains limited. We analysed songs of the thrush nightingale, a migratory songbird with highly complex songs, comparing song structures recorded from breeding populations in Europe and an African wintering site. We demonstrate that males recorded at wintering locations sang songs with both significantly lower syllable consistency and higher element variability. Such characteristics are comparable to those observed during the sensorimotor phase of song development, previously described in other species. This pattern supports the song improvement hypothesis, suggesting that males singing on the wintering grounds may practice songs for the next breeding season. This study contributes to the understanding of the functions of songbird vocal behaviour out of the breeding context.