An efficient primary somatic embryo (SE) and secondary somatic embryo (SSE) production system was developed for the ornamental ginger Hedychium bousigonianum Pierre ex Gagnepain. Addition of two ethylene inhibitors, salicylic acid (SA) and silver nitrate (AgNO3), to the culture media improved the system. Callus was initiated and proliferated on a medium containing Murashige and Skoog (MS) basal salts supplemented with 9.05 μM 2,4-dichlorophenoxyacetic acid and 4.6 μM kinetin. Friable callus was transferred to a liquid medium containing MS basal salts, B5 vitamins, 0.6 μM thidiazuron, and 8.9 μM 6-benzylaminopurine to induce somatic embryogenesis. The effects of various concentrations of SA (0, 25, 50, 75, 100, 125, 150 μM) and AgNO3 (0, 10, 20, 30, 40, 50, 60 μM) on callus growth, SE, and SSE development was further evaluated. The rate of callus growth decreased as the concentrations of SA or AgNO3 increased. AgNO3 and SA at all concentrations stimulated SE and SSE development better than the control although a decrease in embryo production was observed at higher concentrations of both SA and AgNO3. The best concentrations for SA were 75 and 100 μM, whereas for AgNO3, they were 30 to 50 μM for both SE and SSE production.