Many engineering and natural materials exhibit coupled thermo-chemo-mechanical phenomena, which can result in embrittlement and fracture. These fractures, in turn, can alter the subsequent thermal, chemical, and mechanical response. We present a theoretical formulation and computational framework for the analysis of thermo-chemically fractured solids, with emphasis on the post-fracture thermal and chemical interfacial behavior. The theoretical model is based on the thermodynamically-consistent formulation of Loeffel and Anand (IJP, 2011). The computational method extends the scalable discontinuous Galerkin/Cohesive Zone Model (DG/CZM) of Radovitzky et al. (CMAME, 2011) to thermo-chemo-mechanics, which facilitates coupled, large-scale simulations of materials and structures containing failed interfaces. In the proposed framework, all balance laws are enforced weakly via the DG formalism, resulting in a unified formulation for multiphysics problems in solids. This naturally enables the incorporation of general interface models, e.g. to account for effects such as the aeolotropic reduction in thermochemical transport due to the presence of fractures, or the acceleration of chemical reactions along crack flanks. The approach is verified against two analytical solutions of boundary value problems drawn from thermo-poro-elasticity and thermally-driven delamination. A scalable, three-dimensional simulation of thermochemically-driven concrete cracking illustrates the complete capabilities of the interfacial multiphysics modeling framework.