<p style='text-indent:20px;'>We are concerned with blow-up mechanisms in a semilinear heat equation: <p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ u_t = \Delta u + |x|^{2a} u^p , \quad x \in \textbf{R}^N , \, t>0, $\end{document} </tex-math></disp-formula> <p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ p>1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ a>-1 $\end{document}</tex-math></inline-formula> are constants. As for the Fujita equation, which corresponds to <inline-formula><tex-math id="M3">\begin{document}$ a = 0 $\end{document}</tex-math></inline-formula>, a well-known result due to M. A. Herrero and J. J. L. Velázquez, C. R. Acad. Sci. Paris Sér. I Math. (1994), states that if <inline-formula><tex-math id="M4">\begin{document}$ N\geq 11 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ p> 1 + 4/(N-4-2\sqrt{N-1}) $\end{document}</tex-math></inline-formula>, then there exist radial blow-up solutions <inline-formula><tex-math id="M6">\begin{document}$ u_{\ell, {\rm HV}}(x, t) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ \ell \in \bf{N} $\end{document}</tex-math></inline-formula>, such that <p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \lim\limits_{t\to T} \left( T-t \right)^{1/(p-1)} \| u_{\ell, {\rm HV}}(\cdot, t) \|_{L^{\infty}(\textbf{R}^N )} = \infty, $\end{document} </tex-math></disp-formula> <p style='text-indent:20px;'>where <inline-formula><tex-math id="M8">\begin{document}$ T $\end{document}</tex-math></inline-formula> is the blow-up time. We revisit the idea of their construction and obtain refined estimates for such solutions by the techniques developed in recent works and elaborate estimates of the heat semigroup in backward similarity variables. Our method is naturally extended to the case <inline-formula><tex-math id="M9">\begin{document}$ a\not = 0 $\end{document}</tex-math></inline-formula>. As a consequence, we obtain an example of solutions that blow up at <inline-formula><tex-math id="M10">\begin{document}$ x = 0 $\end{document}</tex-math></inline-formula>, the zero point of potential <inline-formula><tex-math id="M11">\begin{document}$ |x|^{2a} $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M12">\begin{document}$ a>0 $\end{document}</tex-math></inline-formula>, and behave in non-self-similar manner for <inline-formula><tex-math id="M13">\begin{document}$ N > 10 + 8a $\end{document}</tex-math></inline-formula>. This last result is in contrast to backward self-similar solutions previously obtained for <inline-formula><tex-math id="M14">\begin{document}$ N < 10 + 8a $\end{document}</tex-math></inline-formula>, which blow up at <inline-formula><tex-math id="M15">\begin{document}$ x = 0 $\end{document}</tex-math></inline-formula>.
Read full abstract