The nonlinear modulation of the interfacial waves of two superposed dielectric fluids with uniform depths and rigid horizontal boundaries, under the influence of constant normal electric fields and uniform horizontal velocities, is investigated using the multiple-time scales method. It is found that the behavior of small perturbations superimposed on traveling wave trains can be described by a nonlinear Schrodinger equation in a frame of reference moving with the group velocity. Wave-like solutions to this equation are examined, and different types of localized excitations (envelope solitary waves) are shown to exist. It is shown that when these perturbations are neutrally stable and sufficiently long, solutions to the nonlinear Schrodinger equation may be approximated by the well-known Korteweg-de Vries equation. The speed of the solitary on the interface is seen to be reduced by the electric field. It is found that there are two critical values of the applied voltage that lead to (i) breaking up of the solitary waves, and (ii) bifurcation of solutions of the governing equations. On the other hand, the complex amplitude of standing wave trains near the marginal state is governed by a similar type of nonlinear Schrodinger equation in which the roles of time and space are interchanged. This equation, under a suitable transformation, is obtained as the Korteweg-de Vries equation with a variable coefficient. It is shown that this type of equations admit a solitary wave type of solutions with variable speed. Using the tangent hyperbolic method, it is observed that the wave speed increases as well as decreases, with the increase of electric field values, according to the chosen wavenumbers range. Finally, the nonlinear stability analysis is discussed in view of the coefficients of nonlinear Schrodinger equation to show the effects of various physical parameters, and also to recover the some limiting cases studied earlier in the literature.