Abstract

We consider localised bulging/necking in an inflated hyperelastic membrane tube with closed ends. We first show that the initiation pressure for the onset of localised bulging is simply the limiting pressure in uniform inflation when the axial force is held fixed. We then demonstrate analytically how, as inflation continues, the initial bulge grows continually in diameter until it reaches a critical size and then propagates in both directions. The bulging solution before propagation starts is of the solitary-wave type, whereas the propagating bulging solution is of the kink-wave type. The stability, with respect to axially symmetric perturbations, of both the solitary-wave type and the kink-wave type solutions is studied by computing the Evans function using the compound matrix method. It is found that when the inflation is pressure-controlled, the Evans function has a single non-negative real root and this root tends to zero only when the initiation pressure or the propagation pressure is approached. Thus, the kink-wave type solution is probably stable but the solitary-wave type solution is definitely unstable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.