Electrochemistry represents an exceptionally multifaceted and hard-to-teach subject. First, it requires knowledge of very distinct fields, including chemical thermodynamics, surface science, quantum mechanics, solid state ionics, catalysis, photovoltaics, cellular biology, and others. As a result, no electrochemistry curriculum can cover all the material needed for comprehensive understanding of the subject, meaning that the course is often shaped by the teacher’s personal preferences and agenda (e.g., fundamental electrochemistry, energy storage, corrosion, bioelectrochemistry, etc.). Second, the very core of electrochemistry – electrical double layer – is heavily debated within the professional community and does not have a satisfactory and consensual description suitable for textbooks and teaching. Unlike the kinetics of molecular reactions in solutions or at gas-solid interfaces, the kinetics of electrochemical reactions with the double layer region, even in simplest cases, is almost impossible to predict from first principles. All this causes confusion among both students and teachers – how should we teach when the key concept cannot be described adequately? Third, the field of electrochemistry is evolving, older concepts are reconsidered, and the new ones are introduced. This makes it difficult for students to relate course material to what is going on in real research. Finally, electrochemistry is vital for industry, which makes it particularly tempting for teachers to introduce a substantial “engineering” component into the curriculum and turn it into “applied electrochemistry course” (covering energy storage and conversion, corrosion, electroplating, etc.). While being well-intended, this leads to oversimplification of electrochemistry and offers a general (and often confusing) overview of the field.In my talk, I will discuss the difficulties of teaching electrochemistry courses and how online platforms can offer possible solutions. Specifically, I will draw on my experience with the Electrochemical Online Colloquium, which aims to make fundamental science and essential knowledge freely accessible to the public. My argument is that a holistic understanding of electrochemistry cannot be achieved if one ignores knowledge gained in neighboring fields. At the same time, discussion of open questions and critical assessment of concepts by experts helps a student understand what is truly well-established in the field and what is not. I will also discuss future opportunities for online education in electrochemistry and how we can improve the quality of research in this field.