Neonicotinoid insecticides (NEOs) such as clothianidin, imidacloprid, and thiamethoxam are used worldwide. The occurrence of their degradates, for instance, clothianidin-n-desmethyl (CLO-N-DES), clothianidin-urea (CLOU), imidacloprid urea (IMIU) and olefin (IMIO), as well as thiamethoxam urea (THXU), have seldom been documented in water due to the lack of a sensitive analytical method. In this study, a method only requiring 12 mL of water sample was developed and validated to quantify 8 NEOs, 13 metabolites, and 3 related insecticides using solid phase extraction (SPE) coupled with HPLC-MS/MS. The method demonstrated good linearity (r2 > 0.99), with limits of detection (LOD) ranging from 0.16 to 1.21 ng/L and limits of quantification (LOQ) from 0.54 to 4.03 ng/L in water samples. Validation showed accuracy between 70 and 130 % and precision below 15 % for most analytes. The method's performance was comparable to, or better than, existing methods, with the advantage of requiring much smaller sample volumes. Using this method, we monitored the occurrence and seasonal variability of NEOs and their metabolites in various surface water and groundwaters matrices from across Iowa. For example, analysis of water samples from private wells across three Iowa counties detected several NEOs, with notable findings including the first detection of flupyradifurone (FLU) in Iowa well water. Surface water analysis from five locations revealed frequent detection of NEOs and their metabolites, with some concentrations exceeding U.S. EPA chronic toxicity benchmarks for freshwater invertebrates. In addition, this is the first study to demonstrate the occurrence of CLO-N-DES, CLOU, and THX-U in US surface water. The study helps advance analytical methods for NEOs and their metabolites while also highlighting their widespread occurrence in Iowa waters and associated ecological risks, emphasizing the need for more comprehensive monitoring of these compounds.
Read full abstract