Metal-organic frameworks (MOFs) are a new kind of microporous materials whose unique properties make them promising as coatings for solid phase microextraction (SPME). However, previous MOF coatings for SPME exclusively focus on single-linker MOFs, and the selective enrichment of polar or nonpolar targets depends on the polarity of linker on the surface of MOFs, which greatly limits the application of MOF coating for SPME in real samples. Here, we report a hybrid MOF-coated stainless steel fiber for SPME of biomarkers in exhaled breath from gastric cancer patients. Zeolitic imidazolate framework-8-90 (ZIF-8-90) possesses the aldehyde groups and methyl groups in the framework as a model MOF, and eight biomarkers (ethanol, acetone, hexanal, hexanol, nonane, isoprene, heptane, and decane) were used as the target analytes. The ZIF-8-90-coated fiber shows high enrichment efficiency for hydrophilic targets and hydrophobic targets, wide linearity (three orders of magnitude), and low detection limits (0.82-2.64 μg L-1). The ZIF-8-90-coated fiber exhibited higher enrichment performance for all the investigated analytes as a result of the synergy of methyl and aldehyde groups, the porous structure, and the suitable pore size of ZIF-8-90 (4-5 Å). The relative standard deviation (RSD) of six repetitions for extractions using the same ZIF-8-90-coated fiber ranged from 2.5 to 7.3%. The reproducibility between the three fibers prepared in parallel varied in the range of 4.8-12% (RSD). The fabricated ZIF-8-90-coated fiber lasted for at least 120 cycles of extraction/desorption/conditioning without an obvious reduction in extraction efficiency and precision. Finally, the developed ZIF-8-90-coated SPME fiber has been successfully used for the analysis of exhaled breath samples from gastric patients with satisfied recoveries (88-106%).