A quaternary Fe4CoNiCu alloy coating is applied on SUS 430 steel substrate for solid oxide fuel cell (SOFC) interconnects application via magnetron sputtering technology. The oxidation behavior of the coated steels is investigated in air at 800 °C. During initial oxidation, Fe and Co in the alloy coating is oxidized preferentially, forming Fe-rich oxide. Ni is oxidized to NiO by inward diffusion of oxygen. Slight Cu diffuses to or near the surface of the oxide scale to form CuO. Some Cu reacts with Fe3O4 to form CuFeO2 inside the oxide scale. The alloy coating is thermally converted into a quaternary spinel coating of (Fe,Co,Ni,Cu)3O4 with a small quantity of CuO existing on the surface and a protective Cr2O3 layer is formed at the steel/coating interface. The (Fe,Co,Ni,Cu)3O4 spinel layer effectively inhibits the growth of Cr2O3 layer and the outward diffusion of Cr. The scale ASR is 13.08 mΩ cm2 at 800 °C after 1680 h oxidation.
Read full abstract